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The liquid crystalline properties of the poly(siloxane - azomethine)s were studied by experiment and simulation. A special 
class of neural networks was used in this paper – modular neural networks – to predict the liquid crystalline behavior as 
function of some molecular parameters which count for geometrical features (fully extended length and diameter of the 
structural unit) or polarizability features (dipole moment). The importance of an adequate choice of the input parameters for 
the neural models was emphasized. Satisfactory results are obtained with this neural network based method, especially in 
the validation phase of the models. 
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1. Introduction 
 
The design of liquid crystalline (LC) polymers is not 

an easy task. It is known that the simple presence of a 
mesogenic group in a polymer’s structure doesn’t 
necessarily lead to a mesomorphic behavior. For a 
mesogen-containing polymer, the presence, nature and 
features of a mesophase depend on numerous parameters, 
like the spacer nature and length, the synthesis conditions, 
polydispersity, intermolecular interactions etc.  

One class of polymers studied for their LC behavior is 
that of polyazomethines. Aromatic polyazomethines or 
poly(Schiff base)s are also known for other attractive 
properties like: thermal stability, non-linear optical 
behavior, semiconducting, electroluminescence, fiber-
forming ability, mechanical resistance, environmental 
stability and ability to form metal chelates [1-9]. The 
structural variety of polyazomethines is rather large and 
includes poly(siloxane-azomethine)s, many of them 
synthesized in our group [9-15].  As the wholly aromatic 
poly(azomethine)s have high melting or softening 
temperatures and low solubility, the introduction of 
siloxane segments as flexible spacers between the rigid 
conjugated aromatic azomethine moieties is one way to 
reduce the transition temperatures and to improve the 
solubility. The LC properties of the poly(siloxane-
azomethine)s were studied and based on these results a 
certain tendency towards mesomorphic behavior was 
observed for low and medium length of the siloxane 
segment. 

One of the most interesting optical properties of 
polymers is their liquid crystalline behavior, because in 
this state, the materials combine two essential properties of 
the matter: the order and the mobility. But, due to the 
complexity of the liquid crystalline phase, it is not at all 

easy to predict the occurrence of a mesophase. There are 
many methods of predicting the liquid crystalline 
behavior, based on molecular, energetic or structure-
property relationship models [16 - 19].  

The property prediction methods may be evaluated 
based on their classification as empirical, semi-empirical, 
theoretical and hybrid approaches. The empirical methods 
usually require extensive data collection and result in 
linear or simple nonlinear structure-property relations. 
Computations are very rapid at the expense of prediction 
accuracy. In addition, these methods require a specific 
functional form which may not always be available and 
the parameters determined by regression from the data. 
They are also computationally expensive, but provide 
excellent property estimations. Most approaches settle for 
the middle ground by utilizing simplifying assumptions as 
those found in semi-empirical methods and hybrid 
approaches. These methods provide the best compromise 
between model development effort, computational time 
and property prediction accuracy. In this regard, neural 
network based methods offer advantages of ease of 
development and implementation and execution speed, 
while maintaining a high degree of accuracy of 
predictions. Neural network based models are relatively 
model free, in the sense that the underlying functional 
form is not as rigorous as in the traditional model based 
methods. This adds to the generality of these methods.   

The open literature contains a few references 
concerning the use of machine learning methods to predict 
the liquid crystalline behavior. For instance, Helge Kranz, 
Volkmar Vill and Bernd Meyer [20] present an example of 
a new way to predict a property from the chemical 
structure of a heterogeneous class of compounds. The 
clearing temperatures of nematic liquid crystalline phases 
of a big number of compounds were used to train neural 
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networks to derive this material property directly from 
their chemical structure.  

Our group has significant contribution to liquid 
crystalline behavior prediction using different learning 
methods, such as neural networks and categorization 
algorithms (decision trees, nearest-neighbor and Bayesian 
induction, implemented in some variants: C4.5 pruned, 
C4.5 unpruned, Random Tree, Random Forest, Naïve 
Bayes, Nearest-Neighbor, 4-Nearest Neighbor, Non-
Nested Generalization Exemplars). These methods have 
been applied to various classes of compounds: 
copolyethers with mesogenic units in the main chain [21], 
ferrocene derivatives [22, 23] or azo aromatic compounds 
[24]. 

In the attempt of optimizing the mesomorphism of 
polyazomethines, we gathered literature data and our own 
results and considered some quantifiable geometric and 
energetic parameters. Based on these calculated measures 
and the experimental observations on the presence of a 
mesophase, we applied the instruments of the artificial 
intelligence in order to predict the LC behavior for related 
polymers. A special class of neural networks was used in 
this paper – modular neural networks. Satisfactory results 
are obtained with this method, especially in the validation 
phase of the models. The appropriate choice of the input 
parameters for the neural network is an important issue of 
the modeling strategy. 

The present approach is an opportunity to prove the 
utility and the efficiency of the neural networks as 
classification methods, particularly for quantifying the 
structure – properties relation for some polyazomethines.   

 
 
2. Experimental 
 
Siloxane-based polyazomethines 
A number of azomethine compounds with 

(poly)siloxane moieties have been synthesized by 
polycondensation reactions, using either macromers with 
preformed azomethine linkages [10-12] or diamines and 
siloxane dialdehydes [15]. The (poly)siloxane segment, 
contained in the appropriate monomer, had various 
lengths, in order to ensure variations in solubility, thermal 
and thermotropic properties. 

The poly(siloxane-azomethine)s were characterized 
by spectral methods (IR-Bruker Vertex 70 FTIR, NMR - 

Bruker 400MHz), GPC (PL-EMD 950 Chromatograph - 
Evaporative Mass Detector) and solubility tests. 

Other polymers with azomethine bonds taken in this 
study have been reported by one of us and other authors 
and contain other spacers than polysiloxanes [25-27]. 

Liquid crystalline behavior 
A set of polyazomethines and related dimers was 

chosen, based on literature data regarding their LC 
properties. The presence of a mesophase, as reported in 
these articles, was generally demonstrated by differential 
scanning calorimetry (DSC) and polarized light optical 
microscopy (POM). 

In our own studies, the DSC analyses were performed 
on a Mettler TA DSC 12E Instrument, with heating and 
cooling rates of 10 oC/min and the POM observations were 
made on an Olympus BH-2 microscope, fitted with a 
THMS 600/HSF9I hot stage.   

Molecular modeling calculations 
Some molecular parameters of the discussed polymers 

and copolymers have been calculated using a demo 
version of Hyperchem software [28]. These parameters 
count for geometrical features (fully extended length, L, 
and diameter, d, of the structural unit) or polarizability 
features (dipole moment). Shape anisotropy parameter 
(axial ratio, L/d), was also considered as a measure of 
detection of rigid core character of the chemical entities 
investigated. Geometry optimization calculations were 
performed under Molecular Mechanics setup, by using a 
force field MM+ module. 

In this study, we considered a number of 
polyazomethines and azomethine models of different 
chemical structure, part of them having siloxane moieties 
as spacers, and we grouped them into 6 structural types, 
according to Table 1. 

• A1-A8 are siloxane-organic low molecular mass 
azomethines containing one siloxane sequence and one or 
two organic sequences;  

• B1N12-B3N4 are organic polyazomethines, formed 
from several organic structural sequences; 

• A9-A18 are alternating siloxane-organic 
polyazomethines with disiloxane sequences; 

• A19-A24 are alternating siloxane-organic 
polyazomethines with oligosiloxane sequences; 

• B4-B8 are organic polyazomethines with ethylene 
sequences instead of siloxane; 

• C1-C5 are organic polyazomethines with no spacer.  
 

 
Table 1. Chemical structure of the analyzed compounds. 

 
Code Chemical structure References 

A1 C
H

NO2N O N C
H

O C
H2

Si O Si CH3

CH3

CH3

CH3

CH3  
[10] 

A2 

M1 Si O Si M1

CH3

CH3

CH3

CH3         

N C
H

O C
H2

NC
H

O2N O : M1
 

[10] 
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Code Chemical structure References 

A3 

10

Si M1

CH3

CH3

M1 Si O

CH3

CH3  
 

[10] 

A4 Si M1

CH3

CH3

M1 Si O

CH3

CH3  20  

[10] 

A5 Si O Si

CH3

CH3

CH3

CH3

CH3O C
H2

C
H

NN N C
H

CH3

CH3  

[10] 

A6 M2 Si O Si M2

CH3

CH3

CH3

CH3

OC
H2

C
H

N NNC
H

CH3

CH3

M 2

 

[10] 

A7 Si M2

CH3

CH3

M2 Si O

CH3

CH3  10  

[10] 

A8 Si M2

CH3

CH3

M2 Si O

CH3

CH3  20  

[10] 

B1N12 C
H

NC
H

(CH2)12O O N

CH3

CH3

n

 

 

[25] 

B1N14 C
H

NC
H

(CH2)14O O N

CH3

CH3

n

 

 

[25] 

B1N16 C
H

NC
H

(CH2)16O O N

CH3

CH3

n

 

 

[25] 

B3N1 O C
H2

C
H2

OC
H

NC
H

N

CH3

CH3

n

 

 

[25] 

B3N2 O C
H2

C
H2

O
 

C
H

NC
H

N

CH3

CH3

n

 

2

 

[25] 

B3N3 
3

O C
H2

C
H2

O
 

C
H

NC
H

N

CH3

CH3

n

 

 

[25] 
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Code Chemical structure References 

B3N4 
4

O C
H2

C
H2

O
 

C
H

NC
H

N

CH3

CH3

n

 

 

[25] 

A9 C
H

O N C
H

N OC
H2

SiSi O

CH3

CH3

CH3

CH3

C
H2

n

 

 

[15] 

A10 NC
H

OC
H2

SiSi O

CH3

CH3

CH3

CH3

C
H2 n

 

C
H

N O

 

[15] 

A11 NC
H

OC
H2

SiO

CH3

CH3

CH3

CH3

C
H

N OC
H2

Si
n

 

 

6  

[15] 

A12 C
H

N OC
H2

C
H

O NC
H2

SiSi O

CH3

CH3

CH3

CH3

C
H2

n

 

 

[15] 

A13 C
H

OC
H2

N C
H2

C
H2

O O C
H

N OSiSi O

CH3

CH3

CH3

CH3

C
H2 n

 

 2
 

[15] 

A14 C
H

OC
H2

N C
H2

C
H2

O O C
H

N OSiSi O

CH3

CH3

CH3

CH3

C
H2 n

 

 
3

 

[15] 

A15 C
H

N OOOC
H

O NC
H2

SiSi O

CH3

CH3

CH3

CH3

C
H2 n

 

 

[15] 

A16 
CH3

N C
H

N OC
H

OC
H2

SiSi O

CH3

CH3

CH3

CH3

C
H2 n

 

 

[15] 

A17 N C
H

N OC
H

OC
H2

SiSi O

CH3

CH3

CH3

CH3

C
H2 n

 O

O

CH3

CH3  

[12] 

A18 N C
H

N OC
H

O

O

O

CH3

CH3

C
H2

SiSi O

CH3

CH3

CH3

CH3

C
H2

 
n

 

6
 

[12] 

B4 
O

C
H

O N C
H

N O
n

 
O

C
H2  4

 

[25] 

A19 
3 3 C

H
N ONC

H
O

O
Si C

H2  

O
C
H2  

Si O

CH3

CH3

CH3

CH3 n

 

 

[11] 

A20 
3 3

C
H2

SiSi O

CH3

CH3

CH3

CH3
 

C
H

N ONC
H

O

OO

n

 

C
H2  4

 
[11] 
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Code Chemical structure References 

A21 
10

3 3
C
H2

SiSi O

CH3

CH3

CH3

CH3
 

C
H

N ONC
H

O

OO

n

 

C
H2  

 

[11] 

B5 NC
H

C
H2

C
H

N O

O

O
n

 
O

C
H2  4

 

[25] 

A22 3 3
C
H2

SiSi O

CH3

CH3

CH3

CH3
O

OO

n

 

C
H2  NC

H
C
H2

C
H

N O

 

[11] 

A23 
3 3

C
H2

SiSi O

CH3

CH3

CH3

CH3
 

O

OO

n

 

C
H2  NC

H
C
H2

C
H

N O
4  

[11] 

A24 
10

3 3
C
H2

SiSi O

CH3

CH3

CH3

CH3
 

O

OO

n

 

C
H2  NC

H
C
H2

C
H

N O

 
[11] 

B6 4 C
H

N ONC
H

O

OO
C
H2  

n

 

 

[25] 

B7 4 C
H2

NC
H

O

OO
C
H2  

n

 

C
H

N O

 

[25] 

B8 4

OO
C
H2  

OCH3

O CH3

C
H

N OO NC
H n

 

 

[25] 

C 1 
*

N
O

H
*

O N
O

H
S

O

O
n
 

 

[26] 

C 2 
O

H

N O

S
O O

 
n

 

[26] 

C 3 
S

O

O
OO

N
O

H
*

O N
O

H
S

O

O x

 

y

 

n

 CH3

CH3  

[26] 

C 4 O O

CH3CH3

N N

H

H

n

 

 

[27] 

C 5 O O

F3CCF3

N N

H

H

n

 

 

[27] 
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Table 2 presents the parameters correlated with the liquid 
crystalline behavior which should be taken into account in 
neural network modeling. 
 

Table 2. Liquid crystalline property and structural parameters obtained  
by molecular modeling 

 

Code Structural unit 
length, L (A) 

Structural unit 
diameter, d (A) 

Asymmetry 
factor, L/d 

Energy 
(kcal/mol) 

Dipol moment 
(D) 

Liquid 
crystalline 
property 

A1 30.51 7.77 3.93 -5.78 2.783 YES 
A2 42.80 25.24 1.70 -4.53 4.146 YES 
A3 72.37 22.14 3.27 -4.00 0.920 YES 
A4 91.19 24.18 3.77 -1.61 0.660 YES 
A5 31.42 6.28 5.00 -4.96 2.532 YES 
A6 39.12 19.64 1.99 -3.09 3.539 YES 
A7 68.47 18.21 3.76 -41.42 3.190 YES 
A8 92.24 27.43 3.36 9.67 0.663 YES 

B1N12 32.67 5.91 5.53 62.65 2.011 YES 
B1N14 35.36 5.92 5.97 67.94 1.880 YES 
B1N16 37.89 5.92 6.40 73.25 2.160 YES 
B3N1 19.95 5.90 3.38 31.44 2.737 YES 
B3N2 21.89 5.87 3.73 44.30 1.123 YES 
B3N3 27.32 5.89 4.64 65.52 7.613 YES 
B3N4 29.59 5.91 5.01 78.70 3.495 YES 

A9 22.97 7.67 2.99 -6.06 0.466 YES 
A10 27.69 7.35 3.77 -6.31 0.809 YES 
A11 29.31 12.53 2.34 -41.85 1.165 NO 
A12 23.96 21.98 1.09 -16.39 8.602 YES 
A13 26.84 11.07 2.42 34.54 7.422 YES 
A14 38.56 6.43 6.00 51.16 0.406 YES 
A15 33.55 10.63 3.16 -37.37 5.540 YES 
A16 21.89 9.58 2.28 -3.97 7.324 NO 
A17 27.61 9.15 3.02 24.09 3.512 YES 
A18 38.69 25.77 1.50 -56.17 1.178 NO 
B4 23.96 5.76 4.16 79.79 15.187 YES 

A19 28.17 9.50 2.97 4.02 7.149 YES 
A20 32.45 12.40 2.62 -34.51 11.668 YES 
A21 50.30 10.13 4.97 -92.32 9.224 NO 
B5 23.64 7.38 3.20 23.64 6.456 YES 

A22 30.95 6.22 4.98 1.92 9.998 YES 
A23 36.20 9.00 4.02 -41.32 20.580 YES 
A24 47.81 16.04 2.98 -117.14 3.549 NO 
B6 26.03 4.97 5.24 25.25 4.787 NO 
B7 18.83 12.28 1.53 100.01 4.837 YES 
B8 24.87 6.54 3.80 47.31 0.998 YES 
C 1 24.47 8.06 3.03 6.42 0.795 NO 
C 2 19.31 5.39 3.58 9.66 5.660 NO 
C 3 22.29 21.70 1.03 19.13 2.750 NO 
C 4 25.74 6.68 3.85 33.13 2.200 NO 
C 5 25.81 6.88 3.75 36.6 2.2 NO 

 
 

3. Results and discussion 
 
We have synthesized and studied a large number of 

poly(siloxane-azomethine)s [8-15], especially from the 
perspective of liquid crystalline behavior and 

processability. When comparing with the starting 
mesogenic compounds or with similar polymers having 
aliphatic spacers instead of siloxane, a few general 
conclusions were obvious: 
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- the introduction of the siloxane moieties led to an 

important decrease of the melting temperature, more 
pronounced with increasing siloxane chain length; 

- a broadening of the mesophase domain was 
observed (especially in dimers); 

- lower isotropization temperatures were also obtained 
in most of the cases, thus avoiding the thermal degradation 
within the mesophase; 

- mostly smectic mesophases were observed for 
polymers containing disiloxane moiety and nematic for 
longer siloxane segments (this is probably due to the 
polydispersity of the starting siloxanes); 

- for long siloxane segments the thermotropic 
behavior was suppressed, probably due to „dilution” of the 
mesogen;  

- good solubility was generally achieved using 
siloxane moieties as soft segment. 

The liquid crystalline property of polyazomethines 
was also studied using a methodology based on neural 
networks. A special class of neural networks was used 
because of accurate results which they provided 
comparatively with other types of neural networks. 

A neural network is formed by processing elements 
(neurons) interconnected with the other neurons through 
coefficients or weights that stand for the relative influence 
of the connections. There are various types of neural 
networks and, among them, the feedforward networks 
constitutes one of the most utilized classes. In a 
feedforward neural network (multilayer perceptron, MLP), 
neurons are arranged in layers: input, hidden and output 
layers. The information deriving from a layer undergoes a 
pondering through weights and is sent to all the neurons in 
the following layer. The processing elements of a same 
layer work in parallel and the process among the layers is 
sequential. 

The multilayered feed-forward network (MLP) is 
frequently used in chemical modeling because the 
simplicity of its theory, ease of programming and, 
generally, good results [29]. But, for our problem – 
prediction of liquid crystalline property for 
polyazomethines – this type of network did not provide 
satisfactory results. High errors, especially in validation 
phase, were obtained with MLP models. 

Modular feedforward networks (MN) are a special 
class of MLP. These networks process their input using 
several parallel MLPs, and then recombine the results. 
This tends to create some structure within the topology, 
which will foster specialization of function in each sub-
module. In contrast to the MLP, modular networks do not 
have full interconnectivity between their layers. Therefore, 
a smaller number of weights are required for the same size 
network (i.e. the same number of processing elements). 
This tends to speed up training times and reduce the 
number of required training exemplars. There are many 
ways to segment a MLP into modules. Several examples 
are presented in Fig. 1 [30]. 

The parameters which have significant influence upon 
the liquid crystalline behavior: structural unit length, L, 
structural unit diameter, d, asymmetry factor, S, Energy, E, 
dipole moment, D, were chosen as inputs for neural 

network models. Two variants of neural modeling were 
considered having different input variables: 1) S, E and D 
and 2) L, d, E and D. Concerning the LC behavior, we 
have coded with “1” the possibility to generate a 
mesophase and with “0” the crystalline or amorphous 
phases.  

 

 
 

Fig. 1. Modular feedforward neural networks. 
 
 

Before training, the data is split into training (about 85 
% from the available data set) and validation data (about 
15 %) sets because it is more important to evaluate the 
performance of the neural networks on unseen data than 
on training data. In this way, we can estimate the most 
important feature of a neural model – the generalization 
capability. 

The transformation of a set of inputs into a set of 
outputs represents the main problem of a neural network 
modeling. The neural network model is obtained by 
training with input/output pairs, which have to be related 
by transformation which is being modeled. The adjustment 
of the neural network function to experimental data 
(learning process or training) is based on a non-linear 
regression technique.  
The procedure used for determination of the neural 
networks architectures was the trial and error method 
based on the minimum mean squared error (MSE), 
calculated with the formula (1). 
 

PN

)yd(

MSE

P

1j

N

1i

2
ijij

⋅

−

=

∑∑
= =                            (1)      

                    
where: P is the number of output processing elements, N is 
the number of exemplars in the data set, ijy  is the network 

output for exemplar i at processing element j, and ijd  is 
the desired output for exemplar i at processing element j. 
NeuroSolutions, a software application dedicated to the 
study of neural networks, was used in order to design and 
obtain predictions of modular neural networks. 

3
2

1

4
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Table 3 contains several topologies of MN tested for 
first variant of modeling, with their performance: MSE, r 
(correlation between experimental data and neural network 
predictions) and Ep (percent error). The topology is 
represented by the input layer with the three considered 
variable (S, E and D), one or two hidden layers and output 
layer with a single neuron for the output variable: LC is 

“1” for the behavior of liquid crystalline and “0” 
otherwise. 
The best network is noted 9 in table 3 and it is marked in 
bold. The prediction of this network in the training phase 
was very good (MSE = 0.0645 and r = 0.9899), therefore 
the neural model learned well the correlation between 
structural parameters and liquid crystalline behavior. 
 

 
Table 3. Modular neural networks tested for prediction of liquid crystalline behavior. 

 
No. 
crt. Topology MSE r Ep 

1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1:

5
5

:3MN  

(structure 1 in figure 1) 
0.2431 0.8872 6.2101 

2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1:

5
5

:3MN  

(structure 4 in figure 1) 
0.0710 0.9102 5.8721 

3 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1:

10
10

:3MN  

(structure 4 in figure 1) 
0.06923 0.9020 5.7952 

4 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1:

4
4

:
12
12

:3MN  

(structure 1 in figure 1) 
0.06121 0.9150 4.9121 

5 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1:

4
4

:
12
12

:3MN  

(structure 4 in figure 1) 
0.04259 0.9299 4.2324 

6 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1:

8
8

:
24
24

:3MN  

(structure 1 in figure 1) 

0.04105 0.9889 3.2435 

7 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1:

8
8

:
24
24

:3MN  

(structure 2 in figure 1) 
0.05891 0.8975 5.2023 

8 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1:

8
8

:
24
24

:3MN  

(structure 3 in figure 1) 
0.06290 0.8920 5.6890 

9 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1:

8
8

:
24
24

:3MN  

(structure 4 in figure 1) 
0.03328 0.9989 2.9174 

 
 
Table 4 presents some predictions of the neural model 

to previously unseen data (not used in the training phase, 
so “unseen” data for the network).  

Cells marked in grey represent wrong prediction of 
the network. For the MN(3:24:8:1) and structure noted 4, 
with S, E and D as inputs, the probability of a correct 
answer was 85.71%. Consequently, this modular network 
can predict satisfactory the LC behavior of the 
polyazomethines. 

 

The success in obtaining a reliable and a robust 
network depends strongly on the choice of the process 
variable involved, the available set of data and its domain 
used for training, as well as the training method. 

For the second case – the inputs L, d, E and D – the 
network with the best performance was MN(4:42:14:1), 
structure 2 in Figure 1, for which MSE = 0.04230 and r = 
9874. The validation phase is presented in table 5; the two 
wrong answers lead to a probability of accurate results of 
71.43 %. 
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Table 4. Validation of the model MN(3:24:8:1). 

 

Code Asymmetry 
factor, S 

Energy 
(kcal/mol) 

Dipol 
moment 

(D) 

Experim 
LC 

Network 
LC 

A6 1.99 -3.09 3.539 1 1 
B3N1 3.38 31.44 2.737 1 1 
A11 2.34 -41.85 1.165 0 0 
A15 3.16 -37.37 5.54 1 1 
A19 2.97 4.02 7.149 1 1 
A24 2.98 -117.14 3.549 0 0 
C 2 3.58 9.66 5.66 0 1 

 The best results are obtained in the first case of 
modeling, with the input parameters S, E and D. We 

cannot consider as an absolute conclusion the fact that the 
choice of S parameter as input variable leads to the best 
results and the above probabilities for the correct answer 
as absolute. But it is sure that an important step is the 
choice of the properties and structural parameters in such a 
combination that allows evaluating with high probability 
the liquid crystalline behavior. 

In the common practice, the axial ratio (length per 
diameter) of a mesogenic unit represents a feature for 
prediction of liquid crystallinity of a polymer. 
Nevertheless, different approaches have been considered 
for the calculation and understanding of this parameter in 
the case of  polymers, and thus different threshold values 
have been proposed for LC behavior [31 - 35].  

 
Table 5. Validation of the model MN(4:42:14:1). 

 

Code Structural unit 
length, L (A) 

Structural 
unit 

diameter, d 
(A) 

Energy 
(kcal/mol) 

Dipol 
moment 

(D) 

Experim 
LC 

Network 
LC 

A6 39.12 19.64 -3.09 3.539 1 1 
B3N1 19.95 5.90 31.44 2.737 1 1 
A11 29.31 12.53 -41.85 1.165 0 0 
A15 33.55 10.63 -37.37 5.54 1 0 
A19 28.17 9.50 4.02 7.149 1 1 
A24 47.81 16.04 -117.14 3.549 0 0 
C 2 19.31 5.39 9.66 5.66 0 1 

  
There are also many other factors which could 

strongly influence this property, such as: good molecular 
parallelism, substantially larger polarizability along the 
chain relative to the transverse direction, persistence 
length of chain (number of units affected by liquid crystal 
alignment), radius of gyration, chain flexibility etc. An 
empirical method was used to calculate the so-called 
„mesogenic index”, but its employment is possible only 
for certain structures [36]. 

It was remarked that the presence of flexible spacers 
(either aliphatic or siloxane) in the backbone provides 
extra flexibility to the chain, but also imparts an effective 
decrease of the overall aspect ratio values of the chain 
[37]. Therefore, in the present work, it seemed a 
reasonable idea to consider the entire structural unit as an 
entity when calculating the aspect ratio, the proper 
contributions of the mesogen and spacer to the liquid 
crystallinity being almost impossible to quantify 
separately. On the other hand, the other parameters (the 
„energetic” ones) also concern the entire molecule, not 
only the mesogen. 

If we take a closer look at the data presented in Tables 
1 and 2, it is obvious that none of the considered 
parameters may give an absolute answer to the question 
wether the respective polymer is a liquid crystal or not. 
Polymers with low asymmetry factor sometimes exhibit 
LC behavior, while polymers with high dipol moment or S 
values not always show this property.  

An important issue of this research is to emphasize the 
utility of using neural networks as efficient classification 

methods which can provide relatively accurate results and 
can be easy to manipulate. For modeling the relation 
between molecular structure and properties it is also 
important to choose the adequate type of neural network 
and, also, the set of input parameters.  

 It should be mentioned that the neural network 
predictions cannot provide the exact result of the actual 
experiment. However, if the error rate is low both for 
training and prediction/cross-validation phase, a neural 
network can provide acceptably accurate results, with the 
advantage of speed and without the use of any material 
resources. Also, we can take into account the fact that 
there are many free parameters involved in neural 
networks, such as choosing the best topology, the learning 
rate, the momentum factor when trying to accelerate the 
learning process, which is rather slow. All these elements 
should be carefully chosen and analyzed in order to have a 
near optimum model. 

The neural network based methodology presented 
here is quite general and can be adapted easily to other 
systems and properties, with real chances to obtain 
accurate results.  

 
4. Conclusions 
 
The liquid crystalline property of poly(siloxane-

azomethine)s was studied using a methodology based on 
modular neural networks. The best topology is developed 
by trial and error method and different inputs parameters 
are taken into account. The best results obtained with S, E 
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and D as network inputs (compared to the case with L, d, E 
and D) prove that the axial ratio (length per diameter) of 
the mesogenic unit represents an important feature for 
prediction of liquid crystallinity of a polymer. 

Because the presence of flexible spacers (either 
aliphatic or siloxane) in the backbone provides extra 
flexibility to the chain, but also imparts an effective 
decrease of the overall aspect ratio values of the chain, in 
the present work, we considered the entire structural unit 
as an entity when calculating the aspect ratio, since the 
other parameters (the „energetic” ones) also concern the 
entire molecule, not only the mesogen. 

The present approach is an opportunity to prove the 
utility and the efficiency of the neural networks as 
classification methods, particularly for quantifying the 
structure – properties relation for some polyazomethines.   

In this research we tried to emphasize the utility of 
using neural networks as efficient classification methods 
which can provide relatively accurate results and can be 
easy to manipulate. The results showed that the proper 
choice of the type of neural network and of the set of input 
parameters is very important.  

The neural network based methodology presented 
here is quite general and can be adapted easily to other 
systems and properties, with real chances to obtain 
accurate results.  
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